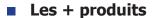
INOX (316L)

ACIERS INOXYDABLES

Métal d'apport TIG Inox 316L en baton pour le soudage des aciers inoxydables austénitiques avec et sans molybdène (316, 316L, 316 Ti/Nb304, 304L). Il est recommandé en première passe dans tous les cas où une pénétration régulière et une bonne compacité sont exigées.


Classification

AWS A5.9: ER 316L

EN ISO 14343-A: W19 12 3 L

Applications

- Tuyauteries, ouvrages de fines épaisseurs inférieures ou égales à 3 mm et pour les passes de pénétrations, • Réservé pour les ensembles ne dépassant pas 350°C en température
- de service.

- Adapté au milieu corrosif, acide, chlore...
- Résistant à la corrosion.

Cmax %	Mn %	Si %	Cr %	Ni %	Mo %	Smax %	Pmax %	Fe
0.025	1.80	0.45	19.00	12.00	2.60	0.02	0.02	Base

Propriétés mécaniques

Rp 0,2	Rm	A 5 d	KV -196°C
410 Mpa	600 Mpa	35%	45 J

Recommandations

Ø baguette (mm)	1,6	2	2,4
épaisseur (mm)	1,5 ▶ 2,0	2,0 ▶ 2,5	2,5 ▶ 3,0
courant de soudage (A)	60▶ 95	90 ▶ 110	120 > 150

Protection gazeuse selon norme EN ISO 14175

100% Argon (I1): 6-12 I/min Envers: Argon / Azote: 3-6 l/min

Conditionnement

Réf. Ø (mm)		longueur (mm)	\	
087262	8 7262 Ø 1.6 330		60	
087279	087279 Ø 2.0 330		40	

Réf.	Ø (mm)	longueur (mm)	\ \
087125	Ø 1.6	1000	920
087200	Ø 2.0	1000	590
087149	Ø 2.4	1000	410